Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up Challenges ๐Ÿง

Was this helpful?

  1. Topic 9 Binary Tree General

112. Path Sum ๐Ÿ”—

Previous114. Flatten Binary Tree to Linked List ๐Ÿ”—Next129. Sum Root to Leaf Numbers ๐Ÿ”—

Last updated 3 months ago

Was this helpful?

Difficulty: Easy - Tags: Binary Tree, Depth-First Search (DFS), Recursion


Problem Statement ๐Ÿ“œ

Given the root of a binary tree and an integer targetSum, return true if the tree has a root-to-leaf path such that the sum of all the node values along the path equals targetSum.

  • A leaf is a node with no children.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22

Output:

true

Explanation:

The root-to-leaf path [5,4,11,2] has a sum of 22.


๐Ÿ”น Example 2:

Input:

root = [1,2,3], targetSum = 5

Output:

false

Explanation:

There are two root-to-leaf paths:

  • Path 1 -> 2: Sum is 3.

  • Path 1 -> 3: Sum is 4.

Neither equals 5.


๐Ÿ”น Example 3:

Input:

root = [], targetSum = 0

Output:

false

Explanation:

The tree is empty, so there are no root-to-leaf paths.


Constraints โš™๏ธ

  • The number of nodes in the tree is in the range [0, 5000].

  • -1000 <= Node.val <= 1000

  • -1000 <= targetSum <= 1000


Solution ๐Ÿ’ก

To determine if there is a root-to-leaf path with the given targetSum:

  1. Use Depth-First Search (DFS) to traverse the binary tree.

  2. Subtract the current node's value from targetSum as you traverse.

  3. Check if:

    • The current node is a leaf.

    • The updated targetSum equals 0.


Java Solution

class Solution {
    public boolean hasPathSum(TreeNode root, int targetSum) {
        // Base case: if the tree is empty, there is no path
        if (root == null) return false;

        // If it's a leaf node, check if the targetSum matches the node's value
        if (root.left == null && root.right == null) {
            return targetSum == root.val;
        }

        // Recursively check left and right subtrees
        int remainingSum = targetSum - root.val;
        return hasPathSum(root.left, remainingSum) || hasPathSum(root.right, remainingSum);
    }
}

Explanation of the Solution

  1. Base Case:

    • If the root is null, the tree is empty, and no path exists.

  2. Leaf Node Check:

    • If the node has no children, compare its value to the remaining targetSum.

  3. Recursive Calls:

    • Subtract the current node's value from targetSum.

    • Recursively check the left and right subtrees.

  4. Combine Results:

    • Use the logical OR operator to combine results from both subtrees.


Time Complexity โณ

  • O(n): Each node is visited once.

Space Complexity ๐Ÿ’พ

  • O(h): Where h is the height of the tree (due to recursion stack).


Follow-up Challenges ๐Ÿง

  • How would you modify this solution to return all paths with the target sum?

  • Can you solve this iteratively instead of using recursion?

You can find the full solution .

here
LeetCode Problem Link