106. Construct Binary Tree from Inorder and Postorder Traversal 🔗
Difficulty: Medium
- Tags: Binary Tree
, Divide and Conquer
, Recursion
Problem Statement 📜
Given two integer arrays inorder
and postorder
:
inorder
represents the inorder traversal of a binary tree.postorder
represents the postorder traversal of the same binary tree.
Construct and return the binary tree.
Examples 🌟
🔹 Example 1:

Input:
inorder = [9,3,15,20,7]
postorder = [9,15,7,20,3]
Output:
[3,9,20,null,null,15,7]
🔹 Example 2:
Input:
inorder = [-1]
postorder = [-1]
Output:
[-1]
Constraints ⚙️
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
andpostorder
consist of unique values.Each value of
postorder
also appears ininorder
.inorder
is guaranteed to be the inorder traversal of the tree.postorder
is guaranteed to be the postorder traversal of the tree.
Solution 💡
To construct the binary tree:
The last value in
postorder
is the root node.Find the root node's position in
inorder
. Values to the left belong to the left subtree, and values to the right belong to the right subtree.Recursively repeat this process for the left and right subtrees.
Java Solution
import java.util.HashMap;
class Solution {
private int postorderIndex;
private HashMap<Integer, Integer> inorderIndexMap;
public TreeNode buildTree(int[] inorder, int[] postorder) {
// Initialize postorder index to the last element
postorderIndex = postorder.length - 1;
// Create a map to store the index of each value in the inorder array
inorderIndexMap = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
inorderIndexMap.put(inorder[i], i);
}
return buildSubtree(postorder, 0, inorder.length - 1);
}
private TreeNode buildSubtree(int[] postorder, int left, int right) {
if (left > right) {
return null; // Base case: no elements to construct the tree
}
// Get the current root value from postorder
int rootValue = postorder[postorderIndex--];
TreeNode root = new TreeNode(rootValue);
// Find the index of the root value in the inorder array
int inorderIndex = inorderIndexMap.get(rootValue);
// Recursively construct the right and left subtrees
root.right = buildSubtree(postorder, inorderIndex + 1, right);
root.left = buildSubtree(postorder, left, inorderIndex - 1);
return root;
}
}
Explanation of the Solution
Postorder Traversal:
The last element is the root.
The second-to-last element is part of the right subtree.
Inorder Traversal:
Left subtree elements come before the root.
Right subtree elements come after the root.
Recursive Construction:
Use the
postorder
array to pick the root.Divide the
inorder
array into left and right subtrees.Recursively construct the tree for both subtrees.
Time Complexity ⏳
O(n), where
n
is the number of nodes. Each node is visited once, and theHashMap
providesO(1)
lookups for the index.
Space Complexity 💾
O(n) for the
HashMap
and recursive stack space.
Follow-up Challenges 🧐
Could you modify the solution if the tree had duplicate values?
What if the input arrays were very large? How would you optimize memory usage?
You can find the full solution here.
Last updated
Was this helpful?