Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution (Recursive Approach)
  • Explanation of the Solution
  • Java Solution (Iterative Approach with Queue)
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up ๐Ÿง

Was this helpful?

  1. Topic 9 Binary Tree General

226. Invert Binary Tree ๐Ÿ”—

Previous100. Same Tree ๐Ÿ”—Next101. Symmetric Tree ๐Ÿ”—

Last updated 4 months ago

Was this helpful?

Difficulty: Easy - Tags: Binary Tree, DFS, BFS, Recursion


Problem Statement ๐Ÿ“œ

Given the root of a binary tree, invert the tree (swap the left and right subtrees), and return its root.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

root = [4,2,7,1,3,6,9]

Output:

[4,7,2,9,6,3,1]

๐Ÿ”น Example 2:

Input:

root = [2,1,3]

Output:

[2,3,1]

๐Ÿ”น Example 3:

Input:

root = []

Output:

[]

Constraints โš™๏ธ

  • The number of nodes in the tree is in the range [0, 100].

  • -100 <= Node.val <= 100.


Solution ๐Ÿ’ก

To invert a binary tree:

  1. Swap the left and right children of the current node.

  2. Recursively apply the same operation for each child.


Java Solution (Recursive Approach)

class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null; // Base case: empty tree
        }

        // Swap the left and right subtrees
        TreeNode temp = root.left;
        root.left = root.right;
        root.right = temp;

        // Recursively invert the left and right subtrees
        invertTree(root.left);
        invertTree(root.right);

        return root; // Return the modified tree
    }
}

Explanation of the Solution

  1. Base Case: If the current node is null, return null.

  2. Swap the left and right children of the node.

  3. Recursively call invertTree for the left and right subtrees.

  4. Return the root after performing all swaps.


Java Solution (Iterative Approach with Queue)

import java.util.LinkedList;
import java.util.Queue;

class Solution {
    public TreeNode invertTree(TreeNode root) {
        if (root == null) {
            return null;
        }

        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);

        while (!queue.isEmpty()) {
            TreeNode current = queue.poll();

            // Swap the left and right subtrees
            TreeNode temp = current.left;
            current.left = current.right;
            current.right = temp;

            // Add children to the queue
            if (current.left != null) {
                queue.offer(current.left);
            }
            if (current.right != null) {
                queue.offer(current.right);
            }
        }

        return root; // Return the modified tree
    }
}

Time Complexity โณ

  • O(n), where n is the number of nodes in the tree. Each node is visited once.

Space Complexity ๐Ÿ’พ

  • O(h) for the recursive approach, where h is the height of the tree (stack space for recursion).

  • O(n) for the iterative approach due to the queue.


Follow-up ๐Ÿง

  • How would you modify the solution for a n-ary tree?

  • Implement a solution to invert a binary tree in postorder traversal.

LeetCode Problem Link