Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution (Sorting Approach)
  • Java Solution (HashMap Approach)
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ

Was this helpful?

  1. Topic 5 Hashmap

242. Valid Anagram ๐ŸŽข

Previous290. Word Pattern ๐ŸงฉNext49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ

Last updated 5 months ago

Was this helpful?

Difficulty: Easy - Tags: Hash Table, String, Sorting


Problem Statement ๐Ÿ“œ

Given two strings s and t, determine if t is an anagram of s. An anagram is a word or phrase formed by rearranging the letters of a different word or phrase, using all the original letters exactly once.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

s = "anagram", t = "nagaram"

Output:

true

๐Ÿ”น Example 2:

Input:

s = "rat", t = "car"

Output:

false

Constraints โš™๏ธ

  • 1 <= s.length, t.length <= 5 * 10^4

  • s and t consist of lowercase English letters.


Solution ๐Ÿ’ก

The simplest way to check if two strings are anagrams is to compare their sorted versions. Alternatively, we can use a frequency count for more efficiency.


Java Solution (Sorting Approach)

import java.util.Arrays;

class Solution {
    public boolean isAnagram(String s, String t) {
        if (s.length() != t.length()) return false;

        char[] sArray = s.toCharArray();
        char[] tArray = t.toCharArray();

        Arrays.sort(sArray);
        Arrays.sort(tArray);

        return Arrays.equals(sArray, tArray);
    }
}

Java Solution (HashMap Approach)

import java.util.HashMap;
import java.util.Map;

class Solution {
    public boolean isAnagram(String s, String t) {
        if (s.length() != t.length()) return false;

        Map<Character, Integer> charCount = new HashMap<>();

        for (char c : s.toCharArray()) {
            charCount.put(c, charCount.getOrDefault(c, 0) + 1);
        }

        for (char c : t.toCharArray()) {
            if (!charCount.containsKey(c) || charCount.get(c) == 0) {
                return false;
            }
            charCount.put(c, charCount.get(c) - 1);
        }

        return true;
    }
}

Explanation of the Solution

  1. Sorting Approach:

    • Convert both strings to character arrays.

    • Sort the arrays.

    • Compare the sorted arrays for equality.

  2. HashMap Approach:

    • Count the frequency of each character in s using a HashMap.

    • For each character in t, decrement its count in the map.

    • If a character in t is missing or its count goes below zero, return false.


Time Complexity โณ

  • Sorting Approach:

    • O(n log n) for sorting, where n is the length of the strings.

  • HashMap Approach:

    • O(n) for iterating through the strings.

Space Complexity ๐Ÿ’พ

  • Sorting Approach:

    • O(n) for storing the sorted arrays.

  • HashMap Approach:

    • O(1) space for the map (since there are only 26 lowercase English letters).

You can find the full solution .

LeetCode Problem Link
here