54. Spiral Matrix 🌐
Difficulty: Medium - Tags: Matrix, Simulation
Problem Statement 📜
Given an m x n matrix, return all elements of the matrix in spiral order.
Examples 🌟
🔹 Example 1:

Input:
int[][] matrix = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
};Output:
[1, 2, 3, 6, 9, 8, 7, 4, 5]🔹 Example 2:

Input:
int[][] matrix = {
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12}
};Output:
[1, 2, 3, 4, 8, 12, 11, 10, 9, 5, 6, 7]Constraints ⚙️
m == matrix.lengthn == matrix[i].length1 <= m, n <= 10-100 <= matrix[i][j] <= 100
Solution 💡
To traverse the matrix in spiral order, we use boundary pointers for rows and columns and move in the order: left-to-right, top-to-bottom, right-to-left, and bottom-to-top.
Java Solution
import java.util.ArrayList;
import java.util.List;
public class SpiralMatrix {
public List<Integer> spiralOrder(int[][] matrix) {
List<Integer> result = new ArrayList<>();
if (matrix == null || matrix.length == 0) return result;
int top = 0, bottom = matrix.length - 1;
int left = 0, right = matrix[0].length - 1;
while (top <= bottom && left <= right) {
// Traverse top row
for (int i = left; i <= right; i++) {
result.add(matrix[top][i]);
}
top++;
// Traverse right column
for (int i = top; i <= bottom; i++) {
result.add(matrix[i][right]);
}
right--;
// Traverse bottom row (if still within bounds)
if (top <= bottom) {
for (int i = right; i >= left; i--) {
result.add(matrix[bottom][i]);
}
bottom--;
}
// Traverse left column (if still within bounds)
if (left <= right) {
for (int i = bottom; i >= top; i--) {
result.add(matrix[i][left]);
}
left++;
}
}
return result;
}
}Explanation of the Solution
Initialization:
Define four boundary variables:
top,bottom,left, andright.
Traversal:
Left to Right: Traverse the current top row and increment
top.Top to Bottom: Traverse the current right column and decrement
right.Right to Left: Traverse the current bottom row (if valid) and decrement
bottom.Bottom to Top: Traverse the current left column (if valid) and increment
left.
Result:
Stop traversal when
top > bottomorleft > right.
Time Complexity ⏳
O(m * n):
Each element of the matrix is visited exactly once.
Space Complexity 💾
O(1):
No additional space is used apart from the result list (output space not counted).
You can find the full solution here.
Last updated
Was this helpful?