Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution (Recursive DFS)
  • Java Solution (Iterative BFS)
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up ๐Ÿง

Was this helpful?

  1. Topic 9 Binary Tree General

104. Maximum Depth of Binary Tree ๐Ÿ”—

PreviousTopic 9 Binary Tree GeneralNext100. Same Tree ๐Ÿ”—

Last updated 4 months ago

Was this helpful?

Difficulty: Easy - Tags: Binary Tree, DFS, BFS


Problem Statement ๐Ÿ“œ

Given the root of a binary tree, return its maximum depth.

A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

root = [3,9,20,null,null,15,7]

Output:

3

๐Ÿ”น Example 2:

Input:

root = [1,null,2]

Output:

2

Constraints โš™๏ธ

  • The number of nodes in the tree is in the range [0, 10โด].

  • -100 <= Node.val <= 100.


Solution ๐Ÿ’ก

To determine the maximum depth of the binary tree, we can use two common approaches:

  1. Depth-First Search (DFS): Traverse the tree recursively and calculate the depth at each level.

  2. Breadth-First Search (BFS): Use a queue to traverse level by level, tracking the depth.


Java Solution (Recursive DFS)

class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0; // Base case: An empty tree has a depth of 0
        }
        int leftDepth = maxDepth(root.left);  // Depth of left subtree
        int rightDepth = maxDepth(root.right); // Depth of right subtree
        return Math.max(leftDepth, rightDepth) + 1; // Add 1 for the root node
    }
}

Java Solution (Iterative BFS)

import java.util.LinkedList;
import java.util.Queue;

class Solution {
    public int maxDepth(TreeNode root) {
        if (root == null) {
            return 0; // Base case: An empty tree has a depth of 0
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root);
        int depth = 0;

        while (!queue.isEmpty()) {
            int size = queue.size(); // Number of nodes at the current level
            for (int i = 0; i < size; i++) {
                TreeNode currentNode = queue.poll();
                if (currentNode.left != null) {
                    queue.offer(currentNode.left);
                }
                if (currentNode.right != null) {
                    queue.offer(currentNode.right);
                }
            }
            depth++; // Increment depth after processing one level
        }

        return depth;
    }
}

Explanation of the Solution

  1. Recursive DFS:

    • At each node, compute the depth of the left and right subtrees recursively.

    • The maximum depth at any node is 1 + max(leftDepth, rightDepth).

  2. Iterative BFS:

    • Use a queue to traverse the tree level by level.

    • Each level's nodes are processed, and their children are added to the queue.

    • Increment the depth counter after processing each level.


Time Complexity โณ

  • DFS: O(n), where n is the number of nodes in the tree.

  • BFS: O(n), since each node is visited exactly once.

Space Complexity ๐Ÿ’พ

  • DFS: O(h), where h is the height of the tree (stack space for recursion).

  • BFS: O(n), for the queue to store nodes at each level.


Follow-up ๐Ÿง

  • Compare the performance of recursive DFS versus iterative BFS for very large trees.

  • Consider using a stack-based iterative DFS implementation for avoiding stack overflow in deep trees.

You can find the full solution: to-learn , to coding interview .

here
here
LeetCode Problem Link