Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Follow-up ๐Ÿง
  • Solution ๐Ÿ’ก
  • Java Solution
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up Challenges ๐Ÿง

Was this helpful?

  1. Topic 9 Binary Tree General

117. Populating Next Right Pointers in Each Node II ๐Ÿ”—

Previous106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—Next114. Flatten Binary Tree to Linked List ๐Ÿ”—

Last updated 3 months ago

Was this helpful?

Difficulty: Medium - Tags: Binary Tree, Breadth-First Search (BFS), Linked List


Problem Statement ๐Ÿ“œ

Given a binary tree:

struct Node {
  int val;
  Node *left;
  Node *right;
  Node *next;
}

Populate each next pointer to point to its next right node. If there is no next right node, the next pointer should be set to NULL.

Initially, all next pointers are set to NULL.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

root = [1,2,3,4,5,null,7]

Output:

[1,#,2,3,#,4,5,7,#]

Explanation:

Given the tree:

    1
   / \
  2   3
 / \    \
4   5    7

The next pointers should connect nodes as:

1 -> NULL
2 -> 3 -> NULL
4 -> 5 -> 7 -> NULL

๐Ÿ”น Example 2:

Input:

root = []

Output:

[]

Constraints โš™๏ธ

  • The number of nodes in the tree is in the range [0, 6000].

  • -100 <= Node.val <= 100.


Follow-up ๐Ÿง

  • You may only use constant extra space.

  • The recursive approach is fine. You may assume implicit stack space does not count as extra space for this problem.


Solution ๐Ÿ’ก

To solve this problem:

  1. Use a level-order traversal to connect nodes at the same level.

  2. For the constant space requirement, use a dummy node to traverse each level without additional data structures.


Java Solution

class Solution {
    public Node connect(Node root) {
        if (root == null) {
            return null;
        }

        // Initialize the current level
        Node current = root;
        Node dummyHead = new Node(0); // Dummy head for the next level
        Node previous = dummyHead;

        while (current != null) {
            while (current != null) {
                if (current.left != null) {
                    previous.next = current.left;
                    previous = previous.next;
                }
                if (current.right != null) {
                    previous.next = current.right;
                    previous = previous.next;
                }
                current = current.next; // Move to the next node in the current level
            }

            // Move to the next level
            current = dummyHead.next;
            dummyHead.next = null; // Reset the dummy head
            previous = dummyHead;
        }

        return root;
    }
}

Explanation of the Solution

  1. Dummy Node Approach:

    • Use a dummy node to build the next pointers for the next level.

    • Traverse each level, connecting child nodes to the dummy node.

  2. Level Traversal:

    • Move through the current level using next pointers.

    • Update the next pointers of child nodes to establish connections.

  3. Space Efficiency:

    • The solution uses constant space by avoiding auxiliary data structures like queues.


Time Complexity โณ

  • O(n): Each node is visited exactly once.

Space Complexity ๐Ÿ’พ

  • O(1): No additional space is used beyond the dummy node and pointers.


Follow-up Challenges ๐Ÿง

  • Could you adapt this solution for a more generalized graph structure?

  • How would the solution change if the binary tree could contain cycles?

You can find the full solution .

here
LeetCode Problem Link