Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up ๐Ÿง

Was this helpful?

  1. Topic 8 Linked List

146. LRU Cache ๐Ÿ”—

Previous86. Partition List ๐Ÿ”—NextTopic 9 Binary Tree General

Last updated 4 months ago

Was this helpful?

Difficulty: Medium - Tags: Design, Linked List, Hash Table


Problem Statement ๐Ÿ“œ

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  1. LRUCache(int capacity): Initialize the LRU cache with positive size capacity.

  2. int get(int key): Return the value of the key if the key exists, otherwise return -1.

  3. void put(int key, int value):

    • Update the value of the key if it exists.

    • Add the key-value pair if the key does not exist.

    • If the number of keys exceeds the capacity, evict the least recently used key.

Constraints:

  • The functions get and put must run in O(1) average time complexity.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]

Output:

[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation:

LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // return -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints โš™๏ธ

  • 1 <= capacity <= 3000

  • 0 <= key <= 10โด

  • 0 <= value <= 10โต

  • At most 2 * 10โต calls will be made to get and put.


Solution ๐Ÿ’ก

Use a combination of:

  1. HashMap: For O(1) access to key-value pairs.

  2. Doubly Linked List: For maintaining the order of usage (most recently used to least recently used).


Java Solution

import java.util.HashMap;

class LRUCache {
    private class Node {
        int key, value;
        Node prev, next;

        Node(int key, int value) {
            this.key = key;
            this.value = value;
        }
    }

    private final int capacity;
    private final HashMap<Integer, Node> map;
    private final Node head, tail;

    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.map = new HashMap<>();
        this.head = new Node(0, 0);
        this.tail = new Node(0, 0);
        head.next = tail;
        tail.prev = head;
    }

    public int get(int key) {
        if (map.containsKey(key)) {
            Node node = map.get(key);
            remove(node);
            insert(node);
            return node.value;
        }
        return -1;
    }

    public void put(int key, int value) {
        if (map.containsKey(key)) {
            remove(map.get(key));
        }
        if (map.size() == capacity) {
            remove(tail.prev);
        }
        insert(new Node(key, value));
    }

    private void remove(Node node) {
        map.remove(node.key);
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void insert(Node node) {
        map.put(node.key, node);
        node.next = head.next;
        head.next.prev = node;
        head.next = node;
        node.prev = head;
    }
}

Explanation of the Solution

  1. Node Definition:

    • Each node stores a key-value pair.

    • Nodes are linked in both directions to allow quick removal.

  2. HashMap:

    • Maps keys to nodes for O(1) access.

  3. Doubly Linked List:

    • The head points to the most recently used node.

    • The tail points to the least recently used node.

  4. Operations:

    • get: Move the node to the head of the list.

    • put: Add the node to the head. If the cache exceeds capacity, remove the node at the tail.


Time Complexity โณ

  • O(1) for both get and put operations.

Space Complexity ๐Ÿ’พ

  • O(n) for storing n key-value pairs in the HashMap and Doubly Linked List.


Follow-up ๐Ÿง

The solution is optimized for LRU Cache implementation with constant time complexity and minimal space usage. Further optimizations could involve concurrent data structures for multi-threaded environments.

You can find the full solution .

LeetCode Problem Link
here