Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Solution ๐Ÿ’ก
  • Java Solution
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up ๐Ÿง

Was this helpful?

  1. Topic 8 Linked List

86. Partition List ๐Ÿ”—

Previous61. Rotate List ๐Ÿ”„Next146. LRU Cache ๐Ÿ”—

Last updated 4 months ago

Was this helpful?

Difficulty: Medium - Tags: Linked List


Problem Statement ๐Ÿ“œ

Given the head of a linked list and a value x, partition it such that:

  1. All nodes with values less than x come before nodes with values greater than or equal to x.

  2. The relative order of the nodes in each partition should be preserved.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

head = [1,4,3,2,5,2], x = 3

Output:

[1,2,2,4,3,5]

๐Ÿ”น Example 2:

Input:

head = [2,1], x = 2

Output:

[1,2]

Constraints โš™๏ธ

  • The number of nodes in the list is in the range [0, 200].

  • -100 <= Node.val <= 100.

  • -200 <= x <= 200.


Solution ๐Ÿ’ก

To partition the list:

  1. Use two pointers (less and greater) to track nodes:

    • less collects nodes with values less than x.

    • greater collects nodes with values greater than or equal to x.

  2. Reconnect the two partitions at the end.


Java Solution

class ListNode {
    int val;
    ListNode next;

    ListNode(int val) {
        this.val = val;
        this.next = null;
    }
}

class Solution {
    public ListNode partition(ListNode head, int x) {
        // Dummy nodes for the two partitions
        ListNode lessHead = new ListNode(0);
        ListNode greaterHead = new ListNode(0);

        // Pointers for building partitions
        ListNode less = lessHead;
        ListNode greater = greaterHead;

        // Traverse the list
        while (head != null) {
            if (head.val < x) {
                less.next = head; // Add to the less partition
                less = less.next;
            } else {
                greater.next = head; // Add to the greater partition
                greater = greater.next;
            }
            head = head.next;
        }

        // End the greater partition to avoid cycles
        greater.next = null;

        // Connect the two partitions
        less.next = greaterHead.next;

        return lessHead.next;
    }
}

Explanation of the Solution

  1. Dummy Nodes:

    • Use dummy nodes to simplify handling the head of each partition.

  2. Partitioning:

    • Traverse the original list, adding nodes with values < x to the less partition and others to the greater partition.

  3. Reconnecting:

    • End the greater partition to prevent cycles.

    • Connect the less partition to the start of the greater partition.


Time Complexity โณ

  • O(n): Each node is visited once.

Space Complexity ๐Ÿ’พ

  • O(1): Uses constant extra space.


Follow-up ๐Ÿง

This solution maintains the relative order of nodes in both partitions while achieving optimal time and space complexity. It is robust against edge cases like empty lists or when all nodes belong to one partition.

You can find the full solution .

here
LeetCode Problem Link