105. Construct Binary Tree from Preorder and Inorder Traversal 🔗
Difficulty: Medium
- Tags: Binary Tree
, Divide and Conquer
, Recursion
Problem Statement 📜
Given two integer arrays preorder
and inorder
:
preorder
represents the preorder traversal of a binary tree.inorder
represents the inorder traversal of the same binary tree.
Construct and return the binary tree.
Examples 🌟
🔹 Example 1:

Input:
preorder = [3,9,20,15,7]
inorder = [9,3,15,20,7]
Output:
[3,9,20,null,null,15,7]
🔹 Example 2:
Input:
preorder = [-1]
inorder = [-1]
Output:
[-1]
Constraints ⚙️
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
andinorder
consist of unique values.Each value in
inorder
also appears inpreorder
.preorder
is guaranteed to be the preorder traversal of the tree.inorder
is guaranteed to be the inorder traversal of the tree.
Solution 💡
To construct the binary tree:
The first value in
preorder
is the root node.Find the root node's position in
inorder
. Values to the left belong to the left subtree, and values to the right belong to the right subtree.Recursively repeat this process for the left and right subtrees.
Java Solution
import java.util.HashMap;
class Solution {
private int preorderIndex = 0;
private HashMap<Integer, Integer> inorderIndexMap;
public TreeNode buildTree(int[] preorder, int[] inorder) {
// Create a map to store the index of each value in the inorder array
inorderIndexMap = new HashMap<>();
for (int i = 0; i < inorder.length; i++) {
inorderIndexMap.put(inorder[i], i);
}
return buildSubtree(preorder, 0, inorder.length - 1);
}
private TreeNode buildSubtree(int[] preorder, int left, int right) {
if (left > right) {
return null; // Base case: no elements to construct the tree
}
// Get the current root value from preorder
int rootValue = preorder[preorderIndex++];
TreeNode root = new TreeNode(rootValue);
// Find the index of the root value in the inorder array
int inorderIndex = inorderIndexMap.get(rootValue);
// Recursively construct the left and right subtrees
root.left = buildSubtree(preorder, left, inorderIndex - 1);
root.right = buildSubtree(preorder, inorderIndex + 1, right);
return root;
}
}
Explanation of the Solution
Preorder Traversal:
The first element is the root.
Subsequent elements belong to the left or right subtree.
Inorder Traversal:
Left subtree elements come before the root.
Right subtree elements come after the root.
Recursive Construction:
Use the
preorder
array to pick the root.Divide the
inorder
array into left and right subtrees.Recursively construct the tree for both subtrees.
Time Complexity ⏳
O(n), where
n
is the number of nodes. Each node is visited once, and theHashMap
providesO(1)
lookups for the index.
Space Complexity 💾
O(n) for the
HashMap
and recursive stack space.
Follow-up Challenges 🧐
What changes would you make to solve the problem if the tree was not guaranteed to have unique values?
How would the approach differ for constructing a binary search tree?
You can find the full solution here.
Last updated
Was this helpful?