Leetcode Top Interview โœจ
GithubLinkedinXOfficial Website
  • Leetcode Top Interview ๐ŸŽฏ
  • Guide to Calculating Algorithm Complexity ๐Ÿš€
  • Topic 1 Array - String
    • 88. Merge Sorted Arrays ๐Ÿงฉ
    • 27. Remove Element ๐Ÿงน
    • 26. Remove Duplicates from Sorted Array ๐Ÿšซ
    • 80. Remove Duplicates from Sorted Array II ๐Ÿšซ๐Ÿšซ
    • 169. Majority Element ๐Ÿ‘‘
    • 189. Rotate Array ๐Ÿ”„
    • 121. Best Time to Buy and Sell Stock ๐Ÿ“ˆ
    • 122. Best Time to Buy and Sell Stock II ๐Ÿ“ˆ๐Ÿ’ฐ
    • 55. Jump Game ๐Ÿƒโ€โ™‚๏ธ
    • 45. Jump Game II ๐Ÿƒโ€โ™‚๏ธ
    • 274. H-Index ๐Ÿ“Š
    • 380. Insert Delete GetRandom O(1) ๐ŸŽฒ
    • 238. Product of Array Except Self ๐Ÿ”„
    • 134. Gas Station โ›ฝ
    • 135. Candy ๐Ÿฌ
    • 42. Trapping Rain Water ๐ŸŒง๏ธ
    • 13. Roman to Integer ๐Ÿ”ข
    • 018 Integer to Roman
    • 58. Length of Last Word ๐Ÿ” 
    • 14. Longest Common Prefix ๐ŸŒฑ
    • 151. Reverse Words in a String ๐Ÿ”„
    • 6. Zigzag Conversion ๐Ÿ”€
    • 28. Find the Index of the First Occurrence in a String ๐Ÿ”„
    • 68. Text Justification ๐Ÿ”„
  • Topic 2 Two Pointers
    • 125. Valid Palindrome ๐Ÿšฆ
    • 392. Is Subsequence ๐Ÿ“
    • 167. Two Sum II - Input Array Is Sorted ๐Ÿ”
    • 11. Container With Most Water ๐Ÿž๏ธ
    • 15. 3Sum ๐ŸŒ
  • Topic 3 Sliding Window
    • 209. Minimum Size Subarray Sum ๐ŸŒ
    • 3. Longest Substring Without Repeating Characters ๐ŸŒ
    • 30. Substring with Concatenation of All Words ๐ŸŒ
    • 76. Minimum Window Substring ๐ŸŒ
  • Topic 4 Matrix
    • 36. Valid Sudoku ๐ŸŒ
    • 54. Spiral Matrix ๐ŸŒ
    • 48. Rotate Image ๐Ÿ”„
    • 73. Set Matrix Zeroes
    • 289. Game of Life ๐Ÿ–ผ๏ธ
  • Topic 5 Hashmap
    • 383. Ransom Note ๐Ÿ”
    • 205. Isomorphic Strings ๐Ÿ”
    • 290. Word Pattern ๐Ÿงฉ
    • 242. Valid Anagram ๐ŸŽข
    • 49. Group Anagrams ๐Ÿคนโ€โ™‚๏ธ
    • 1. Two Sum ๐Ÿ”
    • 202. Happy Number ๐Ÿคฉ
    • 219. Contains Duplicate II ๐Ÿ”
    • 128. Longest Consecutive Sequence ๐Ÿ”
  • Topic 6 Intervals
    • 228. Summary Ranges ๐Ÿ“Š
    • 56. Merge Intervals ๐Ÿ”€
    • 57. Insert Interval ๐Ÿ†•
    • 452. Minimum Number of Arrows to Burst Balloons ๐ŸŽˆ
  • Topic 7 Stack
    • 20. Valid Parentheses ๐Ÿ”
    • 71. Simplify Path ๐Ÿ—บ๏ธ
    • 155. Min Stack ๐Ÿ—ƒ๏ธ
    • 150. Evaluate Reverse Polish Notation ๐Ÿง ๐Ÿ’ป
    • 224. Basic Calculator ๐Ÿงฎ
  • Topic 8 Linked List
    • 141. Linked List Cycle ๐Ÿ”
    • 2. Add Two Numbers ๐Ÿ”ข
    • 21. Merge Two Sorted Lists ๐Ÿ”—
    • 138. Copy List with Random Pointer ๐Ÿ”—
    • 92. Reverse Linked List II ๐Ÿ”„
      • Letโ€™s explain step by step ๐Ÿ‡
    • 25. Reverse Nodes in k-Group ๐Ÿ”„
    • 19. Remove Nth Node From End of List ๐Ÿ—‘๏ธ
    • 82. Remove Duplicates from Sorted List II โŒ๐Ÿ”ข
    • 61. Rotate List ๐Ÿ”„
    • 86. Partition List ๐Ÿ”—
    • 146. LRU Cache ๐Ÿ”—
  • Topic 9 Binary Tree General
    • 104. Maximum Depth of Binary Tree ๐Ÿ”—
    • 100. Same Tree ๐Ÿ”—
    • 226. Invert Binary Tree ๐Ÿ”—
    • 101. Symmetric Tree ๐Ÿ”—
    • 105. Construct Binary Tree from Preorder and Inorder Traversal ๐Ÿ”—
    • 106. Construct Binary Tree from Inorder and Postorder Traversal ๐Ÿ”—
    • 117. Populating Next Right Pointers in Each Node II ๐Ÿ”—
    • 114. Flatten Binary Tree to Linked List ๐Ÿ”—
    • 112. Path Sum ๐Ÿ”—
    • 129. Sum Root to Leaf Numbers ๐Ÿ”—
      • What_is_DFS
    • 124. Binary Tree Maximum Path Sum ๐Ÿ”—
Powered by GitBook
On this page
  • Problem Statement ๐Ÿ“œ
  • Examples ๐ŸŒŸ
  • Constraints โš™๏ธ
  • Follow-up ๐Ÿง
  • Solution ๐Ÿ’ก
  • Java Solution
  • Explanation of the Solution
  • Time Complexity โณ
  • Space Complexity ๐Ÿ’พ
  • Follow-up Challenges ๐Ÿง

Was this helpful?

  1. Topic 9 Binary Tree General

114. Flatten Binary Tree to Linked List ๐Ÿ”—

Previous117. Populating Next Right Pointers in Each Node II ๐Ÿ”—Next112. Path Sum ๐Ÿ”—

Last updated 3 months ago

Was this helpful?

Difficulty: Medium - Tags: Binary Tree, Depth-First Search (DFS), Linked List


Problem Statement ๐Ÿ“œ

Given the root of a binary tree, flatten the tree into a "linked list":

  1. The "linked list" should use the same TreeNode class where:

    • The right child pointer points to the next node in the list.

    • The left child pointer is always null.

  2. The "linked list" should follow the pre-order traversal of the binary tree.


Examples ๐ŸŒŸ

๐Ÿ”น Example 1:

Input:

root = [1,2,5,3,4,null,6]

Output:

[1,null,2,null,3,null,4,null,5,null,6]

Explanation:

The binary tree:

    1
   / \
  2   5
 / \    \
3   4    6

is flattened to:

1 -> 2 -> 3 -> 4 -> 5 -> 6

๐Ÿ”น Example 2:

Input:

root = []

Output:

[]

๐Ÿ”น Example 3:

Input:

root = [0]

Output:

[0]

Constraints โš™๏ธ

  • The number of nodes in the tree is in the range [0, 2000].

  • -100 <= Node.val <= 100.


Follow-up ๐Ÿง

  • Can you flatten the tree in-place (using O(1) extra space)?


Solution ๐Ÿ’ก

To solve this problem:

  1. Use pre-order traversal to flatten the tree into a linked list.

  2. Modify the TreeNode pointers in-place to achieve O(1) space complexity.


Java Solution

class Solution {
    public void flatten(TreeNode root) {
        if (root == null) return;

        TreeNode current = root;

        while (current != null) {
            // If the current node has a left child
            if (current.left != null) {
                // Find the rightmost node in the left subtree
                TreeNode rightmost = current.left;
                while (rightmost.right != null) {
                    rightmost = rightmost.right;
                }

                // Connect the rightmost node to the current's right subtree
                rightmost.right = current.right;

                // Move the left subtree to the right
                current.right = current.left;
                current.left = null;
            }

            // Move to the next node
            current = current.right;
        }
    }
}

Explanation of the Solution

  1. Traversal:

    • Start from the root and traverse down the tree using the right child.

  2. Rearranging Nodes:

    • For each node:

      • If it has a left child, locate the rightmost node in the left subtree.

      • Attach the right subtree to the rightmost node.

      • Move the left subtree to the right and set the left child to null.

  3. In-place Modification:

    • The tree is modified directly without using any extra space.


Time Complexity โณ

  • O(n): Each node is visited once.

Space Complexity ๐Ÿ’พ

  • O(1): The tree is modified in-place without any extra data structures.


Follow-up Challenges ๐Ÿง

  • How would you approach the problem using recursion?

  • Can you adapt this solution to work for a general graph structure?

You can find the full solution .

here
LeetCode Problem Link